FENILEFRINA, CLORHIDRATO DE

HO CH₃, HCI

C₉H₁₃NO₂ . HCl PM: 203,67 *61-76-7*

Definición - Clorhidrato de Fenilefrina es Clorhidrato de (R)-3-Hidroxi- α -[(metilamino)metil] bencenometanol. Debe contener no menos de 98,5 por ciento y no más de 101,0 por ciento de C₉H₁₃NO₂ . HCl, calculado sobre la sustancia seca y debe cumplir con las siguientes especificaciones.

Caracteres generales - Polvo cristalino blanco o casi blanco. Fácilmente soluble en agua y etanol. Funde aproximadamente a 143 °C.

Sustancias de referencia - Clorhidrato de Fenilefrina SR-FA. Clorhidrato de Fenilefrina para identificación de picos SR-FA (contiene impureza C [1-(3-hidroxifenil)-2-(metilamino)etanona] e impureza E [2-(bencilmetilamino) -1-(3-hidroxifenil)etanona]).

CONSERVACIÓN

En envases bien cerrados.

ENSAYOS

Identificación

A- Absorción infrarroja <460>. En fase sólida.

B - Debe responder a los ensayos para *Cloruro* 28 <410>.

Determinación de la rotación óptica <170> *Rotación específica*: Entre -43 ° y -47 °.

31 Solución muestra: 20 mg por mL en agua, 32 determinada a 20 °C.

Determinación de pH <250>

Entre 4,5 y 5,5; determinado sobre una solución preparada disolviendo 200 mg de Clorhidrato de Fenilefrina en 20 mL de agua libre de dióxido de carbono.

Pureza cromatográfica

Sistema cromatográfico - Emplear un equipo para cromatografía de líquidos con un detector ultravioleta ajustado a 215 nm y una columna de $5.5~\rm cm \times 4.0~mm$ con fase estacionaria constituida por octadecilsilano químicamente unido a partículas de sílice de $3~\mu m$ de diámetro. Mantener la columna aproximadamente a $45~\rm ^{\circ}C$. El caudal debe ser aproximadamente $1.5~\rm mL$ por minuto.

47 Solución reguladora pH 2,8 – Disolver 3,25 g 48 de octanosulfonato de sodio monohidratado en 49 1 litro de agua, agitar durante 30 minutos y ajustar a 50 pH 2,8 con ácido fosfórico diluido.

51 Solución A - Acetonitrilo y Solución reguladora 52 pH 2,8 (10:90)

53 Solución B - Acetonitrilo y Solución reguladora 54 pH 2,8 (90:10).

Fase móvil - Emplear mezclas variables de
Solución A y Solución B. Programar el
cromatógrafo del siguiente modo:

Tiempo	Solución A	Solución B	Etapa
(minutos)	(%)	(%)	
0-3	93	7	Isocrático
3-13	93→70	7→30	Gradiente lineal
13-14	70→93	30→7	Gradiente lineal

Disolvente – Solución A y Solución B (80:20).

Solución de aptitud del sistema - Disolver el contenido de un vial de Clorhidrato de Fenilefrina para identificación de picos SR-FA en 2 mL de Disolvente.

Solución estándar – Preparar una solución que contenga aproximadamente 2,5 μg de Clorhidrato de Fenilefrina SR-FA por mL en *Disolvente*.

Solución muestra - Pesar exactamente alrededor de 50 mg de Clorhidrato de Fenilefrina, transferir a un matraz aforado de 50 mL y completar a volumen con Disolvente.

Aptitud del sistema (ver 100. Cromatografía) - Cromatografiar la Solución de aptitud del sistema y registrar las respuestas de los picos según se indica en Procedimiento: el tiempo de retención del pico correspondiente a fenilefrina debe ser aproximadamente 2,8 minutos; la relación picovalle entre los picos de impureza C y el pico de fenilefrina no debe ser menor a 5. Cromatografiar la Solución muestra y registrar las respuestas de los picos según se indica en Procedimiento: el factor de asimetría del pico de fenilefrina no debe ser mayor a 1,9.

Procedimiento - Inyectar por separado en el cromatógrafo volúmenes iguales (aproximadamente 10 μL) de la Solución estándar y de la Solución muestra, registrar los cromatogramas y medir las respuestas de todos los picos. Identificar los picos que pudieran estar presentes en el cromatograma de la Solución muestra y calcular el porcentaje de impurezas en la porción de Clorhidrato de Fenilefrina en ensayo con respecto a la respuesta del pico obtenido con la Solución estándar. Descartar cualquier pico con una respuesta menor a 0.05 %.

\sim	_
ч	`

Sustancia relacionada	Tiempo de retención relativo	Factor de respuesta relativo	Límite (%)
Fenilefrina	1,0	1,0	-
Impureza C	1,3	0,5	0,1
Impureza E	3,6	0,5	0,1
Individual desconocida	-	1,0	0,10
Totales	-	-	0,2

96 97

98 99

100

101 102

103

104

106

107

108 109

111

112

113 114

117

119

Determinación del residuo de ignición <270>

No más de 0,1%.

Pérdida por secado <680>

Secar a 105 °C durante 2 horas: no debe perder más de 1,0 % de su peso.

Límite de cetonas

Pesar exactamente alrededor de 200 mg de Clorhidrato de Fenilefrina, transferir a un matraz aforado de 50 mL, agregar 10 mL de agua y agitar. Completar a volumen con ácido clorhídrico 0,01 M y mezclar. Determinar la absorbancia de esta solución a 310 nm (ver 470. Espectrofotometría ultravioleta y visible), empleando una mezcla de agua y ácido clorhídrico 0,01 M (1 en 5) como blanco. La absorbancia de la solución no debe ser mayor de 0,2.

VALORACIÓN

Pesar exactamente alrededor de 150 mg de Clorhidrato de Fenilefrina, disolver en una mezcla 115 de 0,5 mL de ácido clorhídrico y 80 mL de etanol y mezclar. Titular con hidróxido de sodio etanólico 118 0.1 M (SV). determinando el punto potenciométricamente. Determinar el volumen agregado entre los dos puntos de inflexión (el primer punto de inflexión corresponde al blanco) y 122 hacer las correcciones necesarias (ver 780. Volumetría). Cada mL de hidróxido de sodio etanólico 0,1 M equivale a 20,37 mg de C₉H₁₃NO₂. HCl.

126 127

124

125

128

129

130

131